Copied to
clipboard

G = C92.S3order 486 = 2·35

2nd non-split extension by C92 of S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C92.2S3, C92.C3⋊C2, C3.He3.1C6, C32.2(C32⋊C6), C3.6(He3.2C6), 3- 1+2.S3.1C3, (C3×C9).18(C3×S3), SmallGroup(486,38)

Series: Derived Chief Lower central Upper central

C1C32C3.He3 — C92.S3
C1C3C32C3×C9C3.He3C92.C3 — C92.S3
C3.He3 — C92.S3
C1

Generators and relations for C92.S3
 G = < a,b,c,d | a9=b9=d2=1, c3=b6, ab=ba, cac-1=ab-1, ad=da, cbc-1=a3b7, dbd=a3b-1, dcd=b3c2 >

27C2
3C3
9S3
27C6
3C9
3C9
6C9
9C9
18C9
3D9
9D9
9C3×S3
27C18
33- 1+2
3C3×C9
63- 1+2
3C3×D9
9S3×C9
9C9⋊C6
2C3.He3
3C9×D9

Permutation representations of C92.S3
On 27 points - transitive group 27T184
Generators in S27
(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(1 8 5 2 9 6 3 7 4)(10 12 14 16 18 11 13 15 17)(19 20 21 22 23 24 25 26 27)
(1 14 23 3 17 20 2 11 26)(4 15 22 6 18 19 5 12 25)(7 16 21 9 10 27 8 13 24)
(2 3)(4 8)(5 7)(6 9)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 19)(17 20)(18 21)

G:=sub<Sym(27)| (10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,8,5,2,9,6,3,7,4)(10,12,14,16,18,11,13,15,17)(19,20,21,22,23,24,25,26,27), (1,14,23,3,17,20,2,11,26)(4,15,22,6,18,19,5,12,25)(7,16,21,9,10,27,8,13,24), (2,3)(4,8)(5,7)(6,9)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,19)(17,20)(18,21)>;

G:=Group( (10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (1,8,5,2,9,6,3,7,4)(10,12,14,16,18,11,13,15,17)(19,20,21,22,23,24,25,26,27), (1,14,23,3,17,20,2,11,26)(4,15,22,6,18,19,5,12,25)(7,16,21,9,10,27,8,13,24), (2,3)(4,8)(5,7)(6,9)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,19)(17,20)(18,21) );

G=PermutationGroup([[(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(1,8,5,2,9,6,3,7,4),(10,12,14,16,18,11,13,15,17),(19,20,21,22,23,24,25,26,27)], [(1,14,23,3,17,20,2,11,26),(4,15,22,6,18,19,5,12,25),(7,16,21,9,10,27,8,13,24)], [(2,3),(4,8),(5,7),(6,9),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,19),(17,20),(18,21)]])

G:=TransitiveGroup(27,184);

31 conjugacy classes

class 1  2 3A3B3C6A6B9A···9F9G···9O9P9Q9R18A···18F
order12333669···99···999918···18
size12723327273···36···654545427···27

31 irreducible representations

dim1111223666
type+++++
imageC1C2C3C6S3C3×S3He3.2C6C32⋊C6C92.S3C92.S3
kernelC92.S3C92.C33- 1+2.S3C3.He3C92C3×C9C3C32C1C1
# reps11221212136

Matrix representation of C92.S3 in GL6(𝔽19)

100000
010000
997500
141414200
141400214
990057
,
7140000
520000
0145700
72121700
5000214
0140057
,
11001817
0000118
0000018
1000018
0010018
0001018
,
010000
100000
000001
000010
000100
001000

G:=sub<GL(6,GF(19))| [1,0,9,14,14,9,0,1,9,14,14,9,0,0,7,14,0,0,0,0,5,2,0,0,0,0,0,0,2,5,0,0,0,0,14,7],[7,5,0,7,5,0,14,2,14,2,0,14,0,0,5,12,0,0,0,0,7,17,0,0,0,0,0,0,2,5,0,0,0,0,14,7],[1,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,18,1,0,0,0,0,17,18,18,18,18,18],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0] >;

C92.S3 in GAP, Magma, Sage, TeX

C_9^2.S_3
% in TeX

G:=Group("C9^2.S3");
// GroupNames label

G:=SmallGroup(486,38);
// by ID

G=gap.SmallGroup(486,38);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,3134,224,986,6051,951,453,1096,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^9=d^2=1,c^3=b^6,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,c*b*c^-1=a^3*b^7,d*b*d=a^3*b^-1,d*c*d=b^3*c^2>;
// generators/relations

Export

Subgroup lattice of C92.S3 in TeX

׿
×
𝔽